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Spectral properties of a mixed system using an acoustical resonator

T. Neicu,1 K. Schaadt,1,2 and A. Kudrolli1
1Department of Physics, Clark University, Worcester, Massachusetts 01610

2Center for Chaos and Turbulence Studies, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen O” , Denmark
~Received 21 August 2000; published 22 January 2001!

We experimentally study the spectral properties of a mixed system using the flexural modes of a clover
shaped plate. The system is called mixed because the corresponding ray dynamics has both chaotic and
integrable regions in its phase space. The eigenvalue statistics show intermediate properties between the
universal statistics corresponding to chaotic geometries which show Gaussian orthogonal ensemble statistics
and integrable geometries that show Poisson statistics. We further investigate the Fourier transform of the
peaks to study the influence of the length scales of the plate on the properties of the acoustic resonances. We
observe a weak signal of the periodic orbits in the experimental data. Although some of the peaks in the
Fourier transform of the eigenvalue spectrum correspond to the shortest stable periodic orbits, other strong
peaks are also observed. To understand the role of symmetries, we start with a clover shaped plate belonging
to the C4v point symmetry group, and progressively reduce the symmetry by sanding one of the edges. A
Shnirelman peak inP(s) is observed for the highly symmetric situation due to level clustering.

DOI: 10.1103/PhysRevE.63.026206 PACS number~s!: 05.45.Mt, 46.40.2f
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I. INTRODUCTION

The study of eigenvalues of quantum systems has sh
the presence of universal features in the spectral stati
that are a direct manifestation of the corresponding class
dynamics@1,2#. The spectra of integrable systems are ch
acterized by Poisson statistics, and completely chaotic
tems show statistics described by one of the random ma
ensembles@3#. The intermediate case of ‘‘mixed’’ system
refer to the ones which have both integrable and cha
regions in the corresponding classical phase space. Sem
sical formulas for mixed systems which assume an unco
lated superposition of eigenvalues associated with diffe
chaotic or regular regions in classical phase space were
posed@4#. However, numerical experiments showed that t
formula is not always applicable@5#, perhaps because of co
relations present even in the chaotic levels@6#. Heuristic for-
mulas@7# were observed to give better interpolations@8#. A
universal theory which smoothly bridges the two limitin
cases of fully integrable and fully chaotic classical dynam
has not yet emerged. The need for a better understandin
mixed systems arises from the fact that they are ubiquitou
nature. Furthermore, mixed systems with symmetries sh
new phenomena such as chaos assisted tunneling@6,9,10#.

It is only recently being appreciated that the universa
observed in quantum systems can be also applied to o
wave systems. Experimental work with aluminum and qua
blocks established that the statistics of the vibrational mo
follow the statistics of the eigenvalues of the Gaussian
thogonal ensemble~GOE! of random matrix theory@11–13#.
An interesting issue is the relevance of periodic orbit the
for acoustical systems. However, analysis in terms of
dynamics is complicated for blocks because the wave eq
tion is vectorial. In addition, modes related to different sy
metries are present, and mode conversion occurs at
boundaries. In contrast, it is far simpler to apply ideas fr
random matrix theory and periodic orbit theory to the vib
tions of a plate. The reason for this is that the flexural a
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in-plane modes of a thin plate can be experimentally se
rated @14#, and these modes are observed to be uncoup
@14,15#. The flexural modes at low frequencies are well d
scribed by a scalar biharmonic wave equation, and do
undergo mode conversion at the boundaries. Resona
with quality factorsQ of up to 105 can be obtained at room
temperature using fused quartz plates, thus giving signific
eigenvalue statistics. Therefore the flexural modes of a p
are an interesting system to explore the spectral prope
associated with mixed phase space dynamics due to
shape.

In this paper, we investigate the spectral statistics of
flexural modes of a clover-shaped@16# thin vibrating plate.
The ray trajectories inside a clover geometry has both c
otic and integrable regions in its phase space. We perf
measurements on a highly symmetric clover shaped p
(C4v point symmetry group! to understand the role of sym
metries and the length scales of the plate on the propertie
the eigenvalues. We also sand one of the edges of the pla
study the effect on the spectral properties. A semiclass
theory of flexural modes of a plate@17# proposes that one
expects a close correspondence between the resonance
ray periodic orbits for the acoustic systems, because the
tistical properties of the spectrum are the same as that for
quantum billiard case. We study the Fourier transform
eigenvalues to test this idea. We find that some of the pe
may be associated with the main stable periodic orbit,
others did not correspond to stable periodic orbits. We a
analyze the statistical properties of the acoustical resona
using the spectral spacing distributionP(s) and the spectra
rigidity D3(L). We find that the eigenvalue statistics sho
intermediate properties between the universal GOE and P
son statistics which depends on the symmetry of the syst
A conjecture@18# based on Shnirelman’s theorem states t
a narrow ~Shnirelman! peak in the distribution of neares
neighbor eigenvalue spacing is expected not only for ne
integrable systems but also for chaotic systems with a
crete symmetry, provided that the states with opposite s
©2001 The American Physical Society06-1
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metry are separated in phase space. In the case of the h
symmetric clover shaped plate, a Shnirelman peak is
served in the first bin ofP(s), thus leading the distribution to
deviate from Poisson. TheD3(L) at low L is observed to be
higher thanL/15 appropriate for a Poisson distribution. A
intermediate behavior is observed in bothP(s) and D3(L)
after the initial high symmetry of the plate is complete
broken.

II. CLOVER SHAPED PLATE

The geometry of the clover shaped plate used in our
periments is shown in Fig. 1. The geometry is similar to
equipotential contour of the quartic oscillator which is oft
used to study mixed systems@6,9#. The dimensions that con
trol the geometry are the radius of the convex side,r; the
radius of the concave sides,R; the distance between the lon
gitudinal concave sides, 2Xm ; and the distance between th
vertical concave sides, 2Ym ~see Fig. 1!. The ray dynamics
inside this shape was investigated numerically in detail,
reported in Ref.@16#. Here we summarize the most importa
properties pertaining to this paper. The mixed nature of
phase space is illustrated by the Birkhoff-Poincare sec
shown in Fig. 2~a!. Because of the symmetries present in t
geometry, it is sufficient to plot the phase space froms50 to
s5smax/4, where s is the curvilinear abscissa along th
boundary, andsmax is the perimeter of the plate boundar
Two main regular islands in the phase space are obse
that correspond to trajectories which are confined to the
tical and longitudinal focusing areas. The regular regions
cupy only about 6.3% of the total area, and therefore
system is mainly chaotic. Trajectories that hit only the co
cave sides are stable and belong to integrable regions,
trajectories that hit the convex sides are generally chao
The main stable periodic orbits that may be expected to
fluence the eigenvalue spectrum are shown in Figs. 2~b!–
2~e!.

Next we briefly discuss the wave equation and bound
conditions that govern the flexural modes of a thin pla
According to the Kirchhoff-Love model, the displaceme
W(x,y) of the flexural modes is perpendicular to the plane
the plate, and obey the time-independent wave equation@19#

~¹22k2!~¹21k2!W~x,y!50, ~1!

wherek denotes the wave number, andx andy are the Car-
tesian coordinates. This equation is a good approxima
provided the wavelength is much greater than the thickn
of the plateh. The modes are two dimensional provided t
wavelength is greater than twice the thickness. This imp
that for a fused quartz plate with thicknessh51.5875 mm,
the modes are two dimensional below 1.18 MHz.

In the case of a freely vibrating plate, the boundary co
ditions in the Kirchhoff-Love model are given by@19#

]2W~x,y!

]x2
1n

]2W~x,y!

]y2
50, ~2!
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]3W~x,y!

]x3
1~22n!

]3W~x,y!

]x]y2
50. ~3!

The solutions differ from that of the Schro¨dinger wave equa-
tion for a billiard shape because of the coupled nature of
two boundary conditions. Another important difference is t
edge modes that arise due to presence of the operator¹2

2k2) in Eq. ~1!. However, these modes decay exponentia
from the edge of the plate, and therefore exist in a widthk
near the boundary. The boundary modes are estimated t

FIG. 1. ~a! The clover geometry belongs to theC4v point sym-
metry group (Xm5Ym55.080 cm, r 53.556 cm, and R
59.144 cm.! ~b! The clover shaped plate with reflection symmet
about the vertical axis is obtained by sanding the edge of the p
as indicated. This shape has two symmetry classes of modes~c!
The asymmetric clover shaped plate is obtained by sanding
edge, as indicated by the dashed line.
6-2
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SPECTRAL PROPERTIES OF A MIXED SYSTEM USING . . . PHYSICAL REVIEW E63 026206
less than 5% of the modes, and do not appear to alter
universality of the eigenvalues@14,15#.

The dispersion relation that relates the wave numberk to
the frequencyf was accurately calculated for finite plates
Ref. @15#, and is given by

k5
121/4

hAk
AV~11a1V1a2V2!, ~4!

where k5A2/(12n), V52p f h/cs , and n is the Poisson
ratio. The factorsa1 anda2 are functions ofn,

a15
A6~1727n!

240A12n
, a25

607n211726n21353

134 400~12n!
, ~5!

and were also calculated in Ref.@15#. For fused quartz,
n50.16 @20#, and thereforea150.177 and a2529.40
31023. Until recently only the first term in the expansio
given in Eq.~4! was used to calculatek. However, we find
that the correction terms are necessary to relate the pea
the Fourier transform to the periodic orbits.

III. EXPERIMENTAL METHOD

The experimental setup is the same as described in p
ous experiments reported in Ref.@14#. The plate was preci-
sion machined by Insaco, Inc. to the dimensions shown
Fig. 1 to within 3mm. The plate is kept on three piezoele
tric transducers~one transmitter and two receivers! and the
vibrations of the plate are measured using a HP4395A N
work Analyzer. Therefore, the plate can vibrate freely ins
the chamber, the only contact being made through the
ruby spheres which are attached to the transducers. The

FIG. 2. ~a! The Poincare´ surface of section for the clover shape
plate shown in Fig. 1~a! obtained by launching rays in 1000 rando
directions. The random points indicate chaotic regions, and po
along arcs indicate regular tori regions around stable orbits.
main stable periodic orbits corresponding to the center of the to
the phase space alongp50 are shown in~b!–~e!.
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tacts reduce theQ but do not perturb the resonances.
The plate and the transducers are placed inside a temp

ture controlled chamber at 300 K and at a pressure be
1021 Torr to prevent losses due to air damping. To expe
mentally isolate the flexural class of modes@14#, we increase
the pressure inside the chamber, and measure the reson
spectrum at;300 Torr. TheQ factor of the flexural modes
decreases, whereas theQ factor for the extensional modes
unchanged. Thus the resonances corresponding to the
ural modes are identified. The flexural and extensio
classes of modes have been shown to be uncoupled in a
with a reflection symmetry through the midplane@15#.
Avoided crossings are not observed between flexural and
tensional modes in our experiments, consistent with ear
findings.

The transmission amplitude of the clover shaped pl
with C4v point group symmetry shown in Fig. 1~a! was mea-
sured in a low frequency interval between 52 and 352 kH
and a high frequency interval between 800 and 1000 k
with a frequency resolution of 5/8 Hz. We then sanded
material at one of the edges as indicated in Fig. 1~b! in 61
small steps, the clover shaped plate having a reflection s
metry about the vertical axis. (Ym was reduced by 1.75 %.!
The evolution of the resonances was followed in the low
frequency interval, and is shown in Fig. 3. A number
mode splittings can be observed as the material is sanded
Using this technique most of the near and exact degenera
associated with the symmetries of the clover shaped p

ts
e

in

FIG. 3. Unfolded resonances of the clover shaped plate a
function of the removed massm. Note the degeneracies atm50
that are broken when the symmetry of the plate is destroyed
sanding the edge of the plate.
6-3
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TABLE I. Comparison of the flexural modes measured experimentally for two frequency interval
shapes of the plate, and the theoretical estimate using the Weyl formula.

Clover Frequency interval Number of modes Number of modes Percenta
~kHz! ~experiment! ~theory! error

C4v 52–352 506 525 3.6
C4v 700–1000 875 963 9.1
asymmetric 52–352 489 511 4.3
asymmetric 800–1000 650 649 0.1
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were accurately identified. The presence of large numbe
degeneracies in the unperturbed plate indicates that any
in the machining of the initial plate is negligible.

Finally, the remaining symmetry of the plate was al
broken, as indicated in Fig. 1~c!. Therefore acoustical spectr
corresponding to shapes with three different point gro
symmetries were studied. In Table I, a comparison is m
between the number of modes found experimentally at
ferent frequency intervals, and the theoretical estimates u
the Weyl formula derived in Ref.@15#. It can be seen from
the table that fewer modes are counted in the case of
clover shaped plate withC4v point group symmetry, due to
the high number of near degeneracies present in the sy
compared to the case with no symmetries. However, it m
be also noted that there are errors associated with the t
retical estimates because elastic constants are known on
within 1%.

IV. PROPERTIES OF THE FLEXURAL RESONANCES

Next we analyze the obtained eigenvalues using statis
measures to compare the data to the universal limits,
study the source of the deviations using Fourier transfor

A. Spectral statistics

We obtained the distribution of nearest neighbor spaci
P(s) after unfolding the spectrum@2#, wheres is the differ-
ence between the nearest neighbor eigenvalues norma
by the mean level spacing. The data for the highly symme
cal clover shaped plate, the clover shaped plate with
reflection symmetry along the vertical axis, and the asy
metrical clover shaped plate shown in Fig. 4 and corresp
to the eigenvalues between 52 and 352 kHz.~Similar distri-
butions are also observed at high frequencies.! P(s) for the
clover shaped plate withC4v point group symmetry deviate
strongly from Poisson distribution, and a peak is observe
the first bin, indicating level clustering. As the symmetry
reduced, the peak inP(s) disappears. For the clover shap
plate with no symmetries,P(s) approaches the Wigner
Dyson distribution corresponding to GOE statistics.

The degeneracies in the eigenvalues of the highly s
metrical clover shaped plate occur because of the spe
symmetries present in the geometry. The symmetry grou
the clover shaped plate shown in Fig. 1~a! is C4v @21#. C4v
has five irreducible representations, one of which is dou
degenerate@22#. For shapes with this symmetry, the fo
nondegenerate representations each contribute one eigh
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the number of modes, and the doubly degenerate repres
tion contributes to the remaining half. The degeneracies
lifted when this high symmetry is slightly broken, for ex
ample by reducing one of the dimensions as in Fig. 1~b!.
This is accomplished in experiments by sanding the co
sponding edge. Since the ‘‘super-Poisson’’ behavior inP(s)
occurs due the spatial symmetry of the clover shaped pl
the observed deviation at smalls is a Shnirelman peak
@18,23#.

P(s), excluding the first bin, was fitted with a scaled Po
son distribution following Ref.@18#. The scaled Poisson dis
tribution is given by

P~s!5~12a!2e2(12a)s, ~6!

FIG. 4. The nearest-neighbor eigenvalue distributionP(s) for
~a! the clover shaped plate withC4v symmetry, ~b! the clover
shaped plate with reflection symmetry, and~c! the asymmetric clo-
ver shaped plate. The first bin in~a! is well above the Poisson
distribution because of the presence of degeneracies.
6-4
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SPECTRAL PROPERTIES OF A MIXED SYSTEM USING . . . PHYSICAL REVIEW E63 026206
where the parametera corresponds to the fraction of dege
erate levels present. We obtaina50.21 for the clover shaped
plate withC4v symmetry shown in Fig. 4~a!. Since half the
modes are doubly degenerate, we expecta50.25. This value
estimated on symmetry arguments is close to thea obtained
by fitting the experimental data. The difference is possi
due to some degeneracies being unresolved even after s
ing the edge of the plate. Although the initial prediction
Shnirelman referred to a nearly integrable system, we fin
Shnirelman peak in a mixed system. This suggests that
Shnirelman effect can be extended to mixed systems, as
posed in Ref.@18#.

P(s) for the clover shaped plate with one reflection sy
metry along the vertical axis@Fig. 1~b!# is shown in Fig.
4~b!. The distribution is close to the two GOE curves o
tained by mixing two independent GOE spectra@2#, but de-
viates significantly for small spacings. The symmetry gro
of this clover shaped plate isCs . Cs has two irreducible
nondegenerate representations classifiable by parity with
gard to the vertical symmetry plane. For shapes with t
symmetry, the two nondegenerate representations each
tribute one half of the number of modes. For a complet
chaotic geometry this situation would be compared with
two GOE curves. We completely break the symmetry of
plate, as indicated in Fig. 1~c!, to directly check that the
deviations are due to the mixed dynamics in the plate, an
reduce the complications introduced due to mixing of t
independent classes of modes.P(s) is plotted in Fig. 4~c!,
and is observed to be close to the universal GOE distribut

To obtain a quantitative measure of the distribution, we
P(s) with the Brody parameterb using @7#

P~s!5AsbeBsb11
, ~7!

whereA andB are normalization constants. The distributio
has been used to characterize a distribution between the
son distribution which corresponds tob50 and a GOE dis-
tribution corresponding tob51. We obtainb50.8060.05
for the desymmetrized clover shaped plate at low frequ
cies, thus showing deviations from the GOE distribution.
similar b50.8560.05 was obtained using the data in t
high frequency range from 800 to 1000 kHz. Therefore
details of the nature of the phase space has an impact o
spectral statistics@24#.

We used the spectral rigidityD3(L) to study the long
range correlations in the eigenvalues for the three shapes~see
Fig. 5!. The definition ofD3(L) can be found along with the
theoretical curves in Ref.@25#, and L is the length of the
interval over which the correlation is calculated. TheD3(L)
curve for the clover shaped plate withC4v symmetry shown
in Fig. 5~a! lies above the Poisson distribution for 1,L
,10, possibly reflecting the fact that there are many deg
eracies in the spectra. TheD3(L) for L.10 starts to saturate
and lies between the Poisson and GOE distributions.
D3(L) for the clover shaped plate with vertical reflectio
symmetry is shown in Fig. 5~b!, and is observed to agre
with the two GOE curves forL,7. However, theD3(L) for
L.7 increases above the two GOE curve possibly due to
mixed nature of the phase space. Finally, theD3(L) for the
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desymmetrized case is shown in Fig. 5~c!. The data are ob-
served to follow the GOE curve forL,7, and then increase
roughly linearly. Therefore the data clearly shows the eff
of mixed nature of the phase space on the statistical pro
ties of the flexural modes of the plate because good ag
ment with the GOE curve is observed, at least up toL,25
with chaotic shaped plates@14#.

B. Fourier transforms

To understand the nature of the deviations present in
spectra statistics, we calculated the square of the Fou
transforms using the formula

uF~ l !u25n12 (
i . j ,1< i , j <n

cos@~kj2ki !l #, ~8!

wheren represents the total number of resonances in a s
trum andki denotes the wave number of thei th eigenvalue.
ki were calculated from Eq.~4! using the resonances ob
tained experimentally.uF( l )u2, corresponding to the clove
shaped plate withC4v symmetry in the frequency range from
52 to 352 kHz, is shown in Fig. 6~a!, and that from 800 to
1000 kHz is shown in Fig. 6~b!. A number of strong peaks
are present in the experimental data. According to theoret

FIG. 5. The spectral rigidityD3(L) of the eigenvalues of~a! the
clover shaped plate withC4v symmetry,~b! the clover shaped plate
with reflection symmetry, and~c! the asymmetric clover shape
plate. The deviation of the experimental data forL.7 for the asym-
metric clover shaped plate indicates the influence of the mi
phase space dynamics on the eigenvalues. The deviations in
other two cases are due to a combination of symmetry mixing
the mixed phase space dynamics.
6-5



or
o

od
ve
an
o
ta

h

e
te
on

r
n
a

he

ver
ed
per-
otic
that

sta-

el-
ou-
k at
h is
are

Hu-
ons

as
n
ce

rom
ems
s and
eri-

try,
tion

n-
n-
or-
the

pen-
nts,

m-
m-
of a
.

hir-
e
ro-
ys-

he
l to
s-
. K.
and
-

th
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expectations,uF( l )u2 should show strong peaks at values c
responding to the length of the stable classical periodic
bits. The length corresponding to the shortest stable peri
orbits plotted in Fig. 2 are also indicated. A peak is obser
near the shortest stable periodic orbit in both the high
low frequency data. However, other strong peaks are
served that cannot be directly assigned to the shortest s
periodic orbits.

uF( l )u2 for the desymmetrized Clover for low and hig
frequencies are shown in Figs. 6~c! and 6~d!, respectively.
We note that desymmetrization leaves one set of stable p
odic orbits intact. The peak corresponding to the shor
stable orbit is still observed roughly at the same positi
while the location of other peaks is observed to change.

We note that this weak correspondence between the
bust peak and the shortest periodic orbit is observed o
when the higher order corrections for the wave numbers
included which were recently calculated in Ref.@15#. No
peaks were observed to correspond to periodic orbits w
only the first term in the dispersion relation shown in Eq.~4!
was used to calculatek.

FIG. 6. uF( l )u2 of the flexural modes for~a! the clover shaped
plate withC4v symmetry~52–352 kHz!, ~b! the clover shaped plate
with C4v symmetry~800–1000 kHz!, ~c! the clover shaped plate
with reflection symmetry~52–352 kHz!, and~d! the clover shaped
plate with reflection symmetry~800–1000 kHz!. The position of the
main stable periodic orbits of the system is also shown in
graphs: 1 corresponds to the periodic orbits labeled~b! and ~e! in
Fig. 2, and 2 refers to the periodic orbits labeled~c! and ~d!.
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V. DISCUSSION

We have reported the spectral properties of a clo
shaped thin vibrating plate which is an example of a mix
system. The eigenvalue statistics show intermediate pro
ties between the universal statistics corresponding to cha
shapes which show GOE statistics and integrable shapes
show Poisson statistics. The intermediate nature of the
tistics was illustrated using the Brody parameterb.

This study also provides evidence of the possible r
evance of the periodic orbits in acoustic systems in the F
rier transform of the eigenvalues. There is a strong pea
low and high frequencies for the clover shaped plate whic
located near the shortest stable periodic orbit, but there
also others peaks which are observed. Bogomolny and
gues developed a semiclassical theory of flexural vibrati
of plates, and a trace formula for the density of states w
calculated@17#. They found that the main difference betwee
this formula and the Gutzwiller trace formula is the presen
of a phase factor, because of the reflection of the waves f
the boundary. Therefore, we expect that for acoustic syst
there is also a close correspondence between resonance
classical periodic orbits. Hence the weak signal of the p
odic orbits in the experimental data is puzzling.

In a parallel numerical study of clover shaped geome
eigenvalues were calculated using the biharmonic equa
with clamped boundary conditions@16#. Similar distributions
for P(s) andD3(L) were obtained using the first 281 eige
values. Furthermore,uF( l )u2 show peaks near stable and u
stable periodic orbits. Surprisingly, peaks near unstable
bits are often stronger than those near stable orbits. Thus
statistical properties of the eigenvalues appear to be inde
dent of the free boundary conditions used in the experime
and depend only on the shape of the boundary.

We also experimentally investigated the role of the sy
metry on the eigenvalues of plates. The effect of spatial sy
metries of the clover shaped plate lead to the appearance
Shnirelman peak inP(s) even though the system is mixed
Thus the experimental data support the conjecture of C
ikov and Shepelyansky@18# that a Shnirelman peak can b
expected not only for nearly integrable systems as first p
posed, but also for completely integrable and chaotic s
tems.
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