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Spectral properties of a mixed system using an acoustical resonator
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We experimentally study the spectral properties of a mixed system using the flexural modes of a clover
shaped plate. The system is called mixed because the corresponding ray dynamics has both chaotic and
integrable regions in its phase space. The eigenvalue statistics show intermediate properties between the
universal statistics corresponding to chaotic geometries which show Gaussian orthogonal ensemble statistics
and integrable geometries that show Poisson statistics. We further investigate the Fourier transform of the
peaks to study the influence of the length scales of the plate on the properties of the acoustic resonances. We
observe a weak signal of the periodic orbits in the experimental data. Although some of the peaks in the
Fourier transform of the eigenvalue spectrum correspond to the shortest stable periodic orbits, other strong
peaks are also observed. To understand the role of symmetries, we start with a clover shaped plate belonging
to the C,, point symmetry group, and progressively reduce the symmetry by sanding one of the edges. A
Shnirelman peak ifP(s) is observed for the highly symmetric situation due to level clustering.
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[. INTRODUCTION in-plane modes of a thin plate can be experimentally sepa-
rated[14], and these modes are observed to be uncoupled
The study of eigenvalues of quantum systems has showii4,15. The flexural modes at low frequencies are well de-
the presence of universal features in the spectral statisticgcribed by a scalar biharmonic wave equation, and do not
that are a direct manifestation of the corresponding classicalndergo mode conversion at the boundaries. Resonances
dynamics[1,2]. The spectra of integrable systems are charwith quality factorsQ of up to 1@ can be obtained at room
acterized by Poisson statistics, and completely chaotic sysemperature using fused quartz plates, thus giving significant
tems show statistics described by one of the random matrigigenvalue statistics. Therefore the flexural modes of a plate
ensembleg3]. The intermediate case of “mixed” systems are an interesting system to explore the spectral properties
refer to the ones which have both integrable and chaoti@ssociated with mixed phase space dynamics due to the
regions in the corresponding classical phase space. Semiclehape.
sical formulas for mixed systems which assume an uncorre- In this paper, we investigate the spectral statistics of the
lated superposition of eigenvalues associated with differerflexural modes of a clover-shap¢tig] thin vibrating plate.
chaotic or regular regions in classical phase space were prdhe ray trajectories inside a clover geometry has both cha-
posed 4]. However, numerical experiments showed that thisotic and integrable regions in its phase space. We perform
formula is not always applicab[&], perhaps because of cor- measurements on a highly symmetric clover shaped plate
relations present even in the chaotic leVi@k Heuristic for-  (C,4, point symmetry groupto understand the role of sym-
mulas[7] were observed to give better interpolatid8. A  metries and the length scales of the plate on the properties of
universal theory which smoothly bridges the two limiting the eigenvalues. We also sand one of the edges of the plate to
cases of fully integrable and fully chaotic classical dynamicsstudy the effect on the spectral properties. A semiclassical
has not yet emerged. The need for a better understanding #feory of flexural modes of a plafd7] proposes that one
mixed systems arises from the fact that they are ubiquitous iexpects a close correspondence between the resonances and
nature. Furthermore, mixed systems with symmetries showay periodic orbits for the acoustic systems, because the sta-
new phenomena such as chaos assisted tunnd@iagLd. tistical properties of the spectrum are the same as that for the
It is only recently being appreciated that the universalityquantum billiard case. We study the Fourier transform of
observed in quantum systems can be also applied to otheigenvalues to test this idea. We find that some of the peaks
wave systems. Experimental work with aluminum and quartanay be associated with the main stable periodic orbit, but
blocks established that the statistics of the vibrational modesthers did not correspond to stable periodic orbits. We also
follow the statistics of the eigenvalues of the Gaussian oranalyze the statistical properties of the acoustical resonances
thogonal ensembléGOE) of random matrix theory11-13.  using the spectral spacing distributi®{s) and the spectral
An interesting issue is the relevance of periodic orbit theoryrigidity As(L). We find that the eigenvalue statistics show
for acoustical systems. However, analysis in terms of rayntermediate properties between the universal GOE and Pois-
dynamics is complicated for blocks because the wave equaon statistics which depends on the symmetry of the system.
tion is vectorial. In addition, modes related to different sym-A conjecture[18] based on Shnirelman’s theorem states that
metries are present, and mode conversion occurs at the narrow (Shnirelman peak in the distribution of nearest
boundaries. In contrast, it is far simpler to apply ideas fromneighbor eigenvalue spacing is expected not only for nearly
random matrix theory and periodic orbit theory to the vibra-integrable systems but also for chaotic systems with a dis-
tions of a plate. The reason for this is that the flexural anctrete symmetry, provided that the states with opposite sym-
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metry are separated in phase space. In the case of the highly
symmetric clover shaped plate, a Shnirelman peak is ob-
served in the first bin oP(s), thus leading the distribution to
deviate from Poisson. Thi&;(L) at low L is observed to be
higher thanL/15 appropriate for a Poisson distribution. An
intermediate behavior is observed in bdlis) and A;(L)

after the initial high symmetry of the plate is completely
broken.

Il. CLOVER SHAPED PLATE

The geometry of the clover shaped plate used in our ex-
periments is shown in Fig. 1. The geometry is similar to an
equipotential contour of the quartic oscillator which is often
used to study mixed syster’,9]. The dimensions that con-
trol the geometry are the radius of the convex sidethe
radius of the concave sideR, the distance between the lon-
gitudinal concave sides, Xg,; and the distance between the
vertical concave sides,Y2, (see Fig. 1 The ray dynamics
inside this shape was investigated numerically in detail, and
reported in Ref[16]. Here we summarize the most important
properties pertaining to this paper. The mixed nature of the
phase space is illustrated by the Birkhoff-Poincare section
shown in Fig. 2a). Because of the symmetries present in the
geometry, it is sufficient to plot the phase space forD to
S=Sma/4, Wheres is the curvilinear abscissa along the
boundary, ands,,.x is the perimeter of the plate boundary.
Two main regular islands in the phase space are observed
that correspond to trajectories which are confined to the ver-
tical and longitudinal focusing areas. The regular regions oc-
cupy only about 6.3% of the total area, and therefore the
system is mainly chaotic. Trajectories that hit only the con-
cave sides are stable and belong to integrable regions, and
trajectories that hit the convex sides are generally chaotic.
The main stable periodic orbits that may be expected to in-
fluence the eigenvalue spectrum are shown in Figl)-2
2(e).

Next we briefly discuss the wave equation and boundary
conditions that govern the flexural modes of a thin plate.
According to the Kirchhoff-Love model, the displacement ()
W(x,y) of the flexural modes is perpendicular to the plane of
the plate, and obey the time-independent wave equati®h

(b)

FIG. 1. (a) The clover geometry belongs to tk, point sym-
metry group &,=Y,=5.080 cm, r=3.556 cm, and R
=9.144 cm) (b) The clover shaped plate with reflection symmetry
(V2=K?)(V2+k?)W(x,y)=0, (1) about the vertical axis is obtained by sanding the edge of the plate

as indicated. This shape has two symmetry classes of mégles.

The asymmetric clover shaped plate is obtained by sanding the
wherek denotes the wave number, aré@ndy are the Car- edge, as indicated by the dashed line.

tesian coordinates. This equation is a good approximation
provided the wavelength is much greater than the thickness 3 3
of the plateh. The modes are two dimensional provided the "W(X,y) +(2— )‘9 W(x,y) —0 3)
wavelength is greater than twice the thickness. This implies ax3 v A '
that for a fused quartz plate with thickndss1.5875 mm,
the modes are two dimensional below 1.18 MHz. The solutions differ from that of the Schitimger wave equa-
In the case of a freely vibrating plate, the boundary con+tion for a billiard shape because of the coupled nature of the
ditions in the Kirchhoff-Love model are given 9] two boundary conditions. Another important difference is the
edgze modes that arise due to presence of the oper&for (
2 2 —k?) in Eq. (1). However, these modes decay exponentially
IWx.y) + ,,'9 Wx.y) =0, (2)  from the edge of the plate, and therefore exist in a widkh 1/
ax? ay? near the boundary. The boundary modes are estimated to be
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FIG. 2. (a) The Poincaresurface of section for the clover shaped

plate shown in Fig. (a) obtained by launching rays in 1000 random
P—— ]

directions. The random points indicate chaotic regions, and points

along arcs indicate regular tori regions around stable orbits. The 106
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less than 5% of the modes, and do not appear to alter the
universality of the eigenvalud44,15.

The dispersion relation that relates the wave nunkoter
the frequencyf was accurately calculated for finite plates in
Ref.[15], and is given by

FIG. 3. Unfolded resonances of the clover shaped plate as a
function of the removed mags. Note the degeneracies at=0

that are broken when the symmetry of the plate is destroyed by
sanding the edge of the plate.

1014 tacts reduce th@® but do not perturb the resonances.
k= —\/5(1+a19+a202), (4) The plate and the transducers are placed inside a tempera-
h\/; ture controlled chamber at 300 K and at a pressure below

10! Torr to prevent losses due to air damping. To experi-
where k=2/(1—v), Q=2=fh/cs, and v is the Poisson mentally isolate the flexural class of modég|, we increase
ratio. The factorsaa; anda, are functions ofy, the pressure inside the chamber, and measure the resonance

spectrum at-300 Torr. TheQ factor of the flexural modes

\JB(17-7v) ~ 607v2+1726v—1353 decreases, whereas tQefactor for the extensional modes is
a1= 240\/E A 134 4001—v) (5 unchanged. Thus the resonances corresponding to the flex-
ural modes are identified. The flexural and extensional
and were also calculated in RdfL5]. For fused quartz, classes of modes have been shown to be uncoupled in a plate
»=0.16 [20], and thereforea;=0.177 anda,=—9.40 With a reflection symmetry through the midplarié5].
%1073, Until recently only the first term in the expansion Avoided crossings are not observed between flexural and ex-
given in Eq.(4) was used to calculate However, we find tensional modes in our experiments, consistent with earlier

that the correction terms are necessary to relate the peaks fidings. o _
the Fourier transform to the periodic orbits. The transmission amplitude of the clover shaped plate

with C,, point group symmetry shown in Fig(d was mea-
sured in a low frequency interval between 52 and 352 kHz,
and a high frequency interval between 800 and 1000 kHz,
The experimental setup is the same as described in prewvith a frequency resolution of 5/8 Hz. We then sanded off
ous experiments reported in R¢L4]. The plate was preci- material at one of the edges as indicated in Fid) In 61
sion machined by Insaco, Inc. to the dimensions shown irsmall steps, the clover shaped plate having a reflection sym-
Fig. 1 to within 3um. The plate is kept on three piezoelec- metry about the vertical axisYg, was reduced by 1.75 %.
tric transducergone transmitter and two receiveérand the  The evolution of the resonances was followed in the lower
vibrations of the plate are measured using a HP4395A Netfrequency interval, and is shown in Fig. 3. A number of
work Analyzer. Therefore, the plate can vibrate freely insidemode splittings can be observed as the material is sanded off.
the chamber, the only contact being made through the tinysing this technique most of the near and exact degeneracies
ruby spheres which are attached to the transducers. The coassociated with the symmetries of the clover shaped plate

Ill. EXPERIMENTAL METHOD
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TABLE |. Comparison of the flexural modes measured experimentally for two frequency intervals and
shapes of the plate, and the theoretical estimate using the Weyl formula.

Clover Frequency interval Number of modes Number of modes Percentage
(kHz) (experimenk (theory error
Cu 52-352 506 525 3.6
Cu 700-1000 875 963 9.1
asymmetric 52-352 489 511 4.3
asymmetric 800-1000 650 649 0.1

were accurately identified. The presence of large number dhe number of modes, and the doubly degenerate representa-
degeneracies in the unperturbed plate indicates that any errtoon contributes to the remaining half. The degeneracies are
in the machining of the initial plate is negligible. lifted when this high symmetry is slightly broken, for ex-
Finally, the remaining symmetry of the plate was alsoample by reducing one of the dimensions as in Fig).1
broken, as indicated in Fig(d). Therefore acoustical spectra This is accomplished in experiments by sanding the corre-
corresponding to shapes with three different point grougsPonding edge. Since the “super-Poisson” behavioP(ss)
symmetries were studied. In Table I, a comparison is madéccurs due the spatial symmetry of the clover shaped plate,
between the number of modes found experimentally at difthe observed deviation at smadl is a Shnirelman peak
ferent frequency intervals, and the theoretical estimates usir{d-&2
the Weyl formula derived in Ref15]. It can be seen from P(s), excluding the first bin, was fitted with a scaled Pois-
the table that fewer modes are counted in the case of thgon distribution following Ref[18]. The scaled Poisson dis-
clover shaped plate witS,, point group symmetry, due to tribution is given by
the high number of near degeneracies present in the system

— _ 2A—(1-a)s
compared to the case with no symmetries. However, it must P(s)=(1-a)%e ' 6)
be also noted that there are errors associated with the theo- 1.6 4/
retical estimates because elastic constants are known only to 1 s
within 19%. 1.2 o oot s
n
0.8

IV. PROPERTIES OF THE FLEXURAL RESONANCES (@)

Next we analyze the obtained eigenvalues using statistical 0.4
measures to compare the data to the universal limits, and T
study the source of the deviations using Fourier transforms.

A. Spectral statistics

We obtained the distribution of nearest neighbor spacings
P(s) after unfolding the spectrufi2], wheres is the differ-
ence between the nearest neighbor eigenvalues normalized
by the mean level spacing. The data for the highly symmetri-
cal clover shaped plate, the clover shaped plate with one
reflection symmetry along the vertical axis, and the asym-
metrical clover shaped plate shown in Fig. 4 and correspond
to the eigenvalues between 52 and 352 kt®imilar distri- .
butions are also observed at high frequentiPgs) for the
clover shaped plate wit@,, point group symmetry deviates
strongly from Poisson distribution, and a peak is observed in
the first bin, indicating level clustering. As the symmetry is
reduced, the peak iR(s) disappears. For the clover shaped
plate with no symmetriesP(s) approaches the Wigner-
Dyson distribution corresponding to GOE statistics.

The degeneracies in the eigenvalues of the highly sym-
metrical clover shaped plate occur because of the special

symmetries present in the geometry. The symmetry group of gG, 4. The nearest-neighbor eigenvalue distributR(s) for
the clover shaped plate shown in Fidallis Cy, [21]. C4, (@) the clover shaped plate witG, symmetry, (b) the clover
has five irreducible representations, one of which is doublyshaped plate with reflection symmetry, afeii the asymmetric clo-
degeneratg22]. For shapes with this symmetry, the four ver shaped plate. The first bin i@ is well above the Poisson
nondegenerate representations each contribute one eighth ditribution because of the presence of degeneracies.

P(s)
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where the parameter corresponds to the fraction of degen- -~ Poisson (a)
erate levels present. We obtair=0.21 for the clover shaped od  TideE -

== oxpt.data -

plate withC,, symmetry shown in Fig. @). Since half the
modes are doubly degenerate, we expeet0.25. This value
estimated on symmetry arguments is close todhabtained

by fitting the experimental data. The difference is possibly
due to some degeneracies being unresolved even after sand-
ing the edge of the plate. Although the initial prediction by
Shnirelman referred to a nearly integrable system, we find a
Shnirelman peak in a mixed system. This suggests that the
Shnirelman effect can be extended to mixed systems, as pro-
posed in Ref[18].

P(s) for the clover shaped plate with one reflection sym-
metry along the vertical axi§Fig. 1(b)] is shown in Fig.
4(b). The distribution is close to the two GOE curves ob-
tained by mixing two independent GOE spedt?3 but de-
viates significantly for small spacings. The symmetry group
of this clover shaped plate i€;. C¢ has two irreducible
nondegenerate representations classifiable by parity with re-
gard to the vertical symmetry plane. For shapes with this
symmetry, the two nondegenerate representations each con-
tribute one half of the number of modes. For a completely
chaotic geometry this situation would be compared with the
two GOE curves. We completely break the symmetry of the
plate, as indicated in Fig.(d), to directly check that the

deviations are due to the mixed dynamics in the plate, and to L )

reduce the complications introduced due to mixing of two F!G- 5. The spectral rigiditAs(L) of the eigenvalues df) the
independent classes of mod@(s) is plotted in Fig. 4c), clpver shap_ed plate wit@,v symmetry,(b) the cloyer shaped plate
and is observed to be close to the universal GOE distribution".\”th reflection symmetry, andc) the asymmetric clover shaped

. - s . plate. The deviation of the experimental datalfor 7 for the asym-
To obtain a quantitative measure of the distribution, we fit™ " - - . .
. . metric clover shaped plate indicates the influence of the mixed
P(s) with the Brody parameteg using[7]

phase space dynamics on the eigenvalues. The deviations in the
_ Beftl other two cases are due to a combination of symmetry mixing and
P(s)=Ase ; (7) " the mixed phase space dynamics.

A(L)

whereA andB are normalization constants. The distribution desymmetrized case is shown in Figc)s The data are ob-
has been used to characterize a distribution between the P0i§érved to follow the GOE curve far< 7. and then increases

son distribution which corresponds B=0 and a GOE dis-  q,ghly linearly. Therefore the data clearly shows the effect
tribution corresponding t@=1. We obtaing=0.80-0.05 4 mixed nature of the phase space on the statistical proper-
for the desymmetrized clover shaped plate at low frequenges of the flexural modes of the plate because good agree-
cies, thus showing deviations from the GOE distribution. A ant with the GOE curve is observed, at least ujh t025
similar 5=0.85=0.05 was obtained using the data in the ith chaotic shaped platda4].

high frequency range from 800 to 1000 kHz. Therefore the
details of the nature of the phase space has an impact on the
spectral statisticg24].

We used the spectral rigidith3(L) to study the long To understand the nature of the deviations present in the
range correlations in the eigenvalues for the three sh@ees spectra statistics, we calculated the square of the Fourier
Fig. 5. The definition ofA;(L) can be found along with the transforms using the formula
theoretical curves in Ref25], and L is the length of the
interval over which the correlation is calculated. Thg(L) IF(1)[2=n+2 2 cog (ki — k)] ®)
curve for the clover shaped plate wi,, symmetry shown i>ji=i,j<n o
in Fig. 5a) lies above the Poisson distribution for<L
<10, possibly reflecting the fact that there are many degenwheren represents the total number of resonances in a spec-
eracies in the spectra. Thg(L) for L>10 starts to saturate trum andk; denotes the wave number of thi eigenvalue.
and lies between the Poisson and GOE distributions. Thi; were calculated from Eq4) using the resonances ob-
A4(L) for the clover shaped plate with vertical reflection tained experimentallylF(1)|?, corresponding to the clover
symmetry is shown in Fig. (6), and is observed to agree shaped plate witiC,, symmetry in the frequency range from
with the two GOE curves fok <7. However, theAs(L) for 52 to 352 kHz, is shown in Fig.(é), and that from 800 to
L>7 increases above the two GOE curve possibly due to th&000 kHz is shown in Fig. ®). A number of strong peaks
mixed nature of the phase space. Finally, gL) for the  are presentin the experimental data. According to theoretical

B. Fourier transforms
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V. DISCUSSION

@

T :
—opioaa || We have reported the spectral properties of a clover

shaped thin vibrating plate which is an example of a mixed

\ M m M,\" system. The eigenvalue statistics show intermediate proper-
M ties between the universal statistics corresponding to chaotic

shapes which show GOE statistics and integrable shapes that
show Poisson statistics. The intermediate nature of the sta-
tistics was illustrated using the Brody parameger

This study also provides evidence of the possible rel-
evance of the periodic orbits in acoustic systems in the Fou-
rier transform of the eigenvalues. There is a strong peak at
low and high frequencies for the clover shaped plate which is
located near the shortest stable periodic orbit, but there are
also others peaks which are observed. Bogomolny and Hu-
gues developed a semiclassical theory of flexural vibrations
of plates, and a trace formula for the density of states was

[F(OF (arb.unit.)

' calculated 17]. They found that the main difference between
' ' this formula and the Gutzwiller trace formula is the presence
of a phase factor, because of the reflection of the waves from
' ' the boundary. Therefore, we expect that for acoustic systems
’\/\I\/\N : : there is also a close correspondence between resonances and
\-AM/\/\/\_/V\MA/J\A/\ classical periodic orbits. Hence the weak signal of the peri-
10 20 30 40 50 60 0 odic orbits in the experimental data is puzzling.

I(cm) In a parallel numerical study of clover shaped geometry,
eigenvalues were calculated using the biharmonic equation

plate withC,v symmetry(52—352 kHz, (b) the clover shaped plate ?IthPCIamp%dAbotmdary Cogtdl.tlog?ﬁ]'.Sm,:;:arf.dlsttrzlglitlo.ns
with C,v symmetry(800—1000 kHg, (c) the clover shaped plate or P(s) andAs(L) Werec; ained using the Iirs elgen-
with reflection symmetry52—352 kHz, and(d) the clover shaped Values. FurthermorgF(1)[* show peaks near stable and un-

plate with reflection symmetr{800—1000 kHz The position of the ~ Stable periodic orbits. Surprisingly, peaks near unstable or-
main stable periodic orbits of the system is also shown in thebits are often stronger than those near stable orbits. Thus the

graphs: 1 corresponds to the periodic orbits labélgdand (e) in statistical properties of the eigenvalues appear to be indepen-
Fig. 2, and 2 refers to the periodic orbits labelegland (d). dent of the free boundary conditions used in the experiments,
and depend only on the shape of the boundary.

FIG. 6. |[F(1)|? of the flexural modes fofa) the clover shaped

expectationsF(1)|2 should show strong peaks at values cor- : : .
responding to the length of the stable classical periodic or- We also experimentally investigated the role of the sym-

bits. The length corresponding to the shortest stable periodircnetry on the eigenvalues of plates. The effect of spatial sym-

orbits plotted in Fig. 2 are also indicated. A peak is observedn€tries of the clover shaped plate lead to the appearance of a

near the shortest stable periodic orbit in both the high anhnirelman peak iP(s) even though the system is mixed.

low frequency data. However, other strong peaks are ob?[hus the experimental data support 'ghe conjecture of Chir-

served that cannot be directly assigned to the shortest stadioV and Shepelyansk}l8] that a Shnirelman peak can be

periodic orbits. expected not only for nearly integrable systems as first pro-
|F(1)]? for the desymmetrized Clover for low and high posed, but also for completely integrable and chaotic sys-

frequencies are shown in Figs(ch and &d), respectively. tems.

We note that desymmetrization leaves one set of stable peri-

odic orbits intact. The peak corresponding to the shortest

stable orbit is still observed roughly at the same position, ACKNOWLEDGMENTS

while the location of other peaks is observed to change. o ) ) ) _
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